Mark Scheme (Results)

October 2021

Pearson Edexcel International A Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021
Question Paper Log Number P71287A
Publications Code WST03_01_2110_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt $1 \ldots$ Attempt $2 \ldots$ etc then please send to review.

Question Number	Scheme				Marks
1.	$\mathrm{H}_{0}: \mu=30 \quad \mathrm{H}_{1}: \mu<30$				B1
	$z=\frac{29.5-30}{\frac{2.5}{\sqrt{80}}}$				M1
	$z=-1.7888 \ldots$			awrt-1.79	A1
	$-1.7888<-1.6449$				B1
	Reject H_{0} or significant result or in the critical region				
	There is evidence to support the manager's claim.				A1
					(5)
	Notes				Total 5
	B1 ${ }^{\text {B }}$ Both hypotheses correct in terms of μ				
	M1	for attempting test statistic, allow \pm, Condone $\sqrt{\frac{2.5}{80}}$			
	A1	awrt-1.79 allow $\|z\|=1.7888 \ldots$ Allow p value of 0.0367 or awrt 0.0368 or $\mathrm{CR} \leqslant 29.54$			
	B1	$\|\mathrm{CV}\|=1.6449$ or better (Ignore any comparisons) Allow CR $\leqslant 29.54$ SC If p value of 0.0367 or awrt 0.0368 award B 1 if $2^{\text {nd }} \mathrm{A} 1$ is awarded			
	A1	For correct conclusion. Allow the manager's claim in words if it includes screws and less (oe)			

Question Number	Scheme							Marks						
2	H_{0} : Potassium has no effect on the quality of apple H_{1} : Potassium has an effect on the quality of apple							B1						
	Grade	A	B	C	D	E								
	Expected values	9.6	67.2	124.8	24.0	14.4		M1A1						
	$\begin{aligned} & \chi^{2}=\sum \frac{(O-E)^{2}}{E}=\frac{(9-" 9.6 ")^{2}}{" 9.6 "}+\ldots+\frac{(3-" 14.4 ")^{2}}{" 14.4 "} \text { or } \\ & \chi^{2}=\sum \frac{O^{2}}{E}-N=\frac{9^{2}}{" 9.6 "}+\ldots+\frac{3^{2}}{" 14.4 "}-240 \end{aligned}$							M1						
	Degrees of freedom $=4$ $\chi_{4,0.05}^{2}=9.488$ [Reject H_{0}] Data suggests that potassium may affect the distribution of the grades of apples or there is evidence that Andy's belief is incorrect						awrt 10.7	A1						
								$\begin{aligned} & \text { B1 } \\ & \text { B1ft } \end{aligned}$						
								Alft						
								(8)						
Notes B1 Both hypotheses in context. May use other wording eg The grading of apples remains the same. M1 A correct method to calculate expected values eg 0.04×240 A1 At least 3 expected values correct M1 A correct method using their expected values to calculate χ^{2} At least one correct, ft their A1 expected values with an intention to add awrt 10.7 B1 Degrees of freedom $=4$ (may by be implied by 9.488) B1ft $9.488 \mathrm{ft} \mathrm{their} \mathrm{DoF} .\mathrm{If} \mathrm{no} \mathrm{DoF} \mathrm{stated} \mathrm{then} \mathrm{this} \mathrm{must} \mathrm{be} \mathrm{correct} \mathrm{for} \mathrm{their} \mathrm{working}$. A1ft ft their χ^{2} value provided the 2 ${ }^{\text {nd }} \mathrm{M} 1$ is awarded and CV. If no hypotheses or hypotheses wrong way round do not award. Must include the word 'apples' or ' belief' oe														

Question Number		Scheme	Marks
6(a)	$\bar{h}=65.4$		B1
	$s^{2}=\frac{214676-50 \times(" 65.4 ")^{2}}{49}$		M1
	$=16.693 \ldots$ awrt 16.7		A1
			(3)
(b)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{\mathrm{do}}=\mu_{\mathrm{do} \mathrm{not}} \mathrm{H}_{1}: \mu_{\mathrm{do}}<\mu_{\mathrm{do} \mathrm{not}} \\ & z= \pm \frac{" 65.4 "-70.8}{\sqrt{\frac{16.693 \ldots . . "}{50}+\frac{29.6}{40}}} \end{aligned}$		B1
			M1M1
	$= \pm 5.21 \ldots$CV 1.6449		A1
			B1
	Amala's belief is supported		A1 ft
			(6)
(c)	CLT enables you to assume that (the sampling distribution of the sample mean of) resting heart rate is normally distributed for both groups		B1
			(1)
(d)	Each population/sample is independent or each male is independent of the other males.		B1
	Assume the $\sigma_{\mathrm{do}}{ }^{2}=s_{\mathrm{do}}{ }^{2}$ and $\sigma_{\mathrm{donot}}{ }^{2}=s_{\mathrm{do} \mathrm{not}}{ }^{2}$		B1
			(2)
	Notes		Total 12
(a)	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \end{aligned}$	65.4 only	
		Correct method to find s^{2} using their \bar{h} awrt 16.7	
(b)	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Both hypotheses correct - must be clear which is exercise and which is not	
		For the denominator. Ft their 16.693...	
		Correct ft their 65.4 and 16.693...	
		awrt 5.21 allow $\|z\|=5.21 \ldots$	
		$\|\mathrm{CV}\|=1.6449$ or better ft their z value and CV if the hypotheses are the correct way round. Correct co	n in context
	A1	need belief. May be in words with heart and exercise e.g. resting heart rate is lo exercise regularly	men who
(c)	B1	For the idea both groups normally distributed	
	B1	For identifying the need for the groups or males to be independent.	
		Realising the $\sigma^{2}=s^{2}$ Allow sample sizes big enough for CLT to hold	

