

Mark Scheme (Results)

October 2021

Pearson Edexcel International A Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021 Question Paper Log Number P71287A Publications Code WST03_01_2110_MS All the material in this publication is copyright © Pearson Education Ltd 2021

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question Number		Scheme							
1.	H ₀ : μ =	30 $H_{1:}\mu < 30$							
	$z = \frac{29.5 - 30}{\frac{2.5}{\sqrt{80}}}$								
	z = -1.7888 awrt-1.								
	-1.7888 < -1.6449 Reject H ₀ or significant result or in the critical region								
	There is evidence to support the manager's claim.								
			(5)						
		Notes	Total 5						
	B1	Both hypotheses correct in terms of μ							
	M1	M1 for attempting test statistic, allow \pm , Condone $\sqrt{\frac{2.5}{80}}$							
	A1 awrt -1.79 allow $ z = 1.7888$ Allow p value of 0.0367 or awrt 0.0368 or CR ≤ 29.5								
	B1 $ CV = 1.6449$ or better (Ignore any comparisons) Allow CR ≤ 29.54 SC If <i>p</i> value of 0.0367 or awrt 0.0368 award B1 if 2 nd A1 is awarded								
	A1	For correct conclusion. Allow the manager's claim in words if it includes screws and les	s (oe)						

Question Number		Scheme									
2		Potassium has no effect on the quality of apple Potassium has an effect on the quality of apple									
	Grade Expected values	d <u>A</u> 9.6	<i>B</i> 67.2	С 124.8	D 24.0	<u>Е</u> 14.4			M1A1		
	$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = \frac{(9-"9.6")^{2}}{"9.6"} + \dots + \frac{(3-"14.4")^{2}}{"14.4"} \text{ or}$ $\chi^{2} = \sum \frac{O^{2}}{E} - N = \frac{9^{2}}{"9.6"} + \dots + \frac{3^{2}}{"14.4"} - 240$							M1			
	= 10.657 awrt 10 Degrees of freedom = 4						awrt 10.7	Al			
								B1			
	$\chi^2_{4,0.05} =$	9.488							B1ft		
	[Reject H_0] Data suggests that potassium may affect the distribution of the grades of apples or there is evidence that Andy's belief is incorrect							A1ft			
				N T					(8)		
	B1	Both hypothes	es in cont		otes se other v	vording e	o The	grading of apples remain	Total 8		
	M1	Both hypotheses in context. May use other wording eg The grading of apples remains the same. A correct method to calculate expected values eg 0.04×240									
	A1	-	At least 3 expected values correct								
	M1	M1 A correct method using their expected values to calculate χ^2 At least one correct, ft									
	A1	expected value awrt 10.7	es with an	intention to	o add						
	B1	awrt 10.7 Degrees of freedom = 4 (may by be implied by 9.488)									
	B1ft	9.488 ft their DoF. If no DoF stated then this must be correct for their working.									
	A1ft	ft their χ^2 value provided the 2 nd M1 is awarded and CV. If no hypotheses or hypoth way round do not award. Must include the word 'apples' or ' belief' oe									

Question Number	Scheme										Ma	rks		
3(a)	jam	A	4	В	С	D	Ε	F	G	Н	Ι			
	Pric			2	4	5	3	6	7	8	9	-	M1	
	Taste 1 2 8 9 4 3 6 5 7 $\sum d^2 = [0+0+]16+16+1+9+1+9+4[=56]$											M1A	1	
											MIA	1		
	$r_s = 1 - \frac{6(56)}{9(80)}; = \frac{8}{15} = 0.5333$ awrt 0.533									dM1A				
(b)	$H \cdot q = 0$	<u>н</u> .	$a \neq 0$										B1	(5)
(0)	$H_0: \rho = 0, H_1: \rho \neq 0$ Critical Value = 0.7											B1 B1		
	There is n			a re	lationsł	nip betw	veen pri	ce and t	aste of	strawbe	rry jam		B1ft	
						•								(3)
(c)	$r = \frac{1}{\sqrt{2.0}}$	$\frac{16.494}{455 \times 24}$	43 43.55	56									M1	
	= 0.738	Э										awrt 0.739	A1	
(1)			0										D 1	(2)
(d)	$H_0: \rho = 0$. 1 .	$\rho > 0$										B1	
	CV = 0.5822 There is evidence of a <u>positive correlation</u> between <u>price</u> and <u>taste</u> of strawberry jam									B1 B1ft				
	There is evidence of a positive conclation between price and taste of strawberry Jam										Din	(3)		
(e)	Spearman's rank as it is unlikely that a joint normal distribution applies.								B1					
	or the marks are a judgement or the marks are not a meaningful scale.													
								Notes	5				Tot	(1) tal 14
(a)	M1	Attem	pt to r	ank	each ja	r for tas	te and p	rice. A	t least 4	pairs of	f ranks o	correct		
	M1	M1 For an attempt at d^2 row for their ranks (may be implied by $\sum d^2 = 56$)												
	A1													
	dM1	Dependent on the previous M being awarded. Using $1 - \frac{6\sum d^2}{9(80)}$												
	A1	$\frac{8}{15}$ or awrt 0.533												
(b)	B1 Both hypotheses stated in terms of ρ . Must be two- tail.													
	B1 0.7 for CV. Allow 0.6 if a one tail test is used													
	B1ft						mment y		-					
	M1					with th	eir 0.7 (provide	ed then	$ r_s < 1$	1)			
(c)	M1 A1	Correct awrt 0		nod I	used									
(d)				eses	stated	in term	s of ρ .	Must b	e one-ta	il. If B() awarde	ed in part (b) the	en allow	v any
	B1		• •				istent wi					. ,		
	B1						ail test i							
	B1ft Correct conclusion in context which has positive correlation (this may be implied by description of positive correlation), price and taste. Follow through their 0.5822 and											ct		
(e)	B1	-	ing Sp	-							-	is ranked' as a		e

Question Number			Scheme	Mark	ks					
4(a)	Label the ho	Label the houses in area A 1- 41, area B 1 – 164, area C 1 – 123 and area D 1 - 82								
	Use random numbers to select a									
	Simple random sample of $\underline{20}$ area \underline{A} , $\underline{80}$ area \underline{B} , $\underline{60}$ area \underline{C} and $\underline{40}$ area \underline{D}									
		1		A1	(3)					
(b)	$\frac{357 \times 260}{200}$ or $\frac{238 \times 260}{200}$									
(0)	<u>595</u> or <u>595</u>									
	156 and 10)4		A1						
					(2)					
(c)	Observed	Expected	$\frac{(O-E)^2}{E}$ $\frac{(162 - "156")^2}{"156"} = \frac{3}{13} = 0.2307$ $\frac{(98 - "104")^2}{"104"} = \frac{9}{26} = 0.3461$							
	162	"156"	$\frac{\left(162 - "156"\right)^2}{"156"} = \frac{3}{13} = 0.2307$	M1						
	98	"104"	$\frac{(98 - "104")^2}{"104"} = \frac{9}{26} = 0.3461$							
	$\chi^2 = 4.657 + "0.2307" + "0.346"$									
	= 5.234 awrt 5.2.									
	v = (2 - 1)(3 - 1) = 2									
	$\chi_2^2(0.05) = 5.991 \implies CR: \chi^2 > 5.991$									
	There is no evidence to suggest that there is an association between <u>age</u> and <u>listening</u> to <i>LSB</i>									
			Notes	Tota	(6) al 11					
(a)	M1 I	For suitable lab	belling of all four areas. E.g. for area A: $1 - 41$ or $0 - 40$							
(b)	M1 H A1 H N S M1 4	 For use of random numbers to select houses in each area. For 20 A, 80B, 60C and 40 D (dependent on 2nd M1 only) NB A simple random sample of 20 A, 80B, 60C and 40 D scores M0M1A1. Allow M1 : allocate random numbers to each house M1 : arrange the numbers in order A1 : select the 1st 20 for area <u>A</u>, <u>80 for</u> area <u>B</u>, <u>60</u> for area <u>C</u> and <u>40</u> for area <u>D</u> SC If M0M0 scored then award B1 for <u>20</u> area <u>A</u>, <u>80</u> area <u>B</u>, <u>60</u> area <u>C</u> and <u>40</u> area <u>D</u> A correct method for finding one expected value. Correct answer for both values 								
(c)	M1 /									
		wrt 5.23	χ values to 1.057 (may be implied by a fair χ - calculation, do not is t	•)						
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
			ft their DoF							
	dA1 A correct contextual conclusion, which has the words age and listening dependent on b marks being awarded.									
	1	NB if they give	e a p value of 0.0730 rather than the CV they can get M1M1B1B0A	A1						

Question Number		Scheme	Marks				
5(a)	$2.977 \pm 2.5758 \times \frac{0.015}{3}$						
		, 2.9898) awrt (2.964, 2.990)	A1				
			(3)				
(b)	The CI do	bes not contain the stated weight.	B1 (1)				
(c)	$2.995 - 1.96 \times \frac{0.015}{\sqrt{n}} < 2.991$						
	$\sqrt{n} < \frac{1.96 \times 0.015}{2.995 - 2.991}$						
	$\sqrt{n} < aw$	rt 7.35	A1				
	<i>n</i> = 54		Alcao				
		Notes	(4) 				
(a) (b) (c)	M1 B1 A1 B1 M1 M1d	$2.977 \pm (z \text{ value}) \times \frac{0.015}{3}$ awrt 2.5758 awrt (2.964, 2.990 (condone 2.99)) cao this must be consistent with their confidence interval Setting up an inequality using z value > 1.5 Condone = Dep on previous M mark. Correct rearranging to get $\sqrt{n} < \dots$ or $n < \dots$ Condone =	or >				
	A1 awrt 7.35 may be implied by awrt 54 A1cao 54						

Question Number		Scheme	Marks			
6(a)	$\overline{h} = 65.4$		B1			
	$s^2 = \frac{214}{3}$	$s^2 = \frac{214676 - 50 \times ("65.4")^2}{49}$				
	=16.6	93 awrt 16.7	Al			
			(3)			
(b)	$H_0:\mu_{do} =$	$\mu_{\rm do \ not} \ {\rm H_1}: \mu_{\rm do \ not} < \mu_{\rm do \ not}$	B1			
	$z = \pm \frac{1}{\sqrt{1-1}}$	$\frac{"65.4"-70.8}{"16.693"} + \frac{29.6}{40}$	M1M1			
	$= \pm 5.2$		A1			
	CV 1.644	19	B1			
	Amala's <u>l</u>	<u>belief</u> is supported	A1 ft			
			(6)			
(c)		bles you to assume that (the sampling distribution of the sample mean of) resting is normally distributed for <u>both</u> groups	B1			
(1)	T 1		(1)			
(d)		ulation/sample is independent or each male is independent of the other males.	B1			
	Assume t	he $\sigma_{do}^2 = s_{do}^2$ and $\sigma_{do not}^2 = s_{do not}^2$	B1			
			(2)			
		Notes	Total 12			
(a)	B1	65.4 only				
	M1	Correct method to find s^2 using their \overline{h}				
	A1	awrt 16.7				
(b)	B1	Both hypotheses correct - must be clear which is exercise and which is not				
	M1	For the denominator. Ft their 16.693				
	M1	Correct ft their 65.4 and 16.693				
	A1 B1	awrt 5.21 allow $ z = 5.21$				
	DI	CV = 1.6449 or better ft their z value and CV if the hypotheses are the correct way round. Correct conclus	tion in context			
	A1	need belief. May be in words with heart and exercise e.g. resting heart rate is lower exercise regularly				
(c)	B1	For the idea both groups normally distributed				
(c) (d)	B1 B1	For identifying the need for the groups or males to be independent.				
(-)		Realising the $\sigma^2 = s^2$				
	B1	Allow sample sizes big enough for CLT to hold				

Question Number		Scheme	Marks					
7(a)	$E(B_1 -$	$B_2 = 0$	B1					
	$Var(B_1 - B_2) = 0.006$							
	$P(B_1 - B_2 > 0.1) = 2P(B_1 - B_2 > 0.1)$							
		$= 2 \times P\left(Z > \frac{0.1}{\sqrt{0.006''}}\right) \left[= 2 \times P(Z > 1.2909)\right]$	M1					
		= 0.1967 awrt 0.197	A1 (5)					
(b)	$\overline{B} \sim N$	$\left(1.96, \frac{0.003}{n}\right)$	(5) B1					
	$P(\overline{B} > $	$ (1.96, \frac{0.003}{n}) $ $ 2) = P\left(Z > \frac{2 - 1.96}{\sqrt{0.003/n}}\right) [< 0.01] $	M1					
	$\frac{2-1.96}{\sqrt{\frac{0.003}{n}}}$	$\frac{6}{3} > 2.3263$	B1 dM1					
	<i>n</i> = 11		A1 (5)					
(c)	$\mu_{14} = 2$	$1.8 + 500 \times 1.96 [= 1001.8]$; $\sigma_M^2 = 0.6 + 500 \times 0.003 [= 2.1]$	(5) M1 ; M1					
	$\frac{1}{1} L = 4T - 3M$							
	$\mu_X = 4 \times 774 - 3 \times "1001.8" [= 90.6]; \sigma_X^2 = 16 \times 1.8 + 9 \times "2.1" [= 47.7]$							
	$P(4T - 3M > 100) = P\left(Z > \frac{100 - "90.6"}{\sqrt{"47.7"}}\right) \left[= P(Z > 1.361)\right]$							
		= 0.0869 (table) or 0.08675 (calc)	A1					
			(7)					
(-)			Total 17					
(a)	B1 B1	For expected value being 0 written or used						
	ы М1	For 0.006 being written or used for Variance Realising they need to consider both						
	M1	Correct standardisation using their 0.1 and 0.006 If the expected value and/or stand	lard deviation					
	A1	not stated then they must be correct awrt 0.197						
(b)	B1	The correct distribution written or used						
	M1	Correct standardisation. Allow using their distribution if stated but must contain \sqrt{n}	<i>n</i> for sd					
	B1	Using awrt 2.3263						
	dM1	Dep on previous M being awarded using a z value, $2 < z < 3$						
(c)	A1 M1	11 Correct method for finding the mean of <i>M</i>						
	M1Correct method for finding the mean of MM1Correct method for finding the var of M							
	M1 Realising the need to find $4T - 3M$ or $4T - 3M - 100$ or $100 + 3M - 4T$							
	M1 Correct method for finding the mean of X (using $4T - 3M - 100 = -9.4$ or $100 + 3M$ M1 Correct method for finding the var of X							
	M1	Correct method for finding the var of X Correct standardisation using their mean of X and their standard deviation of X If the stated then they must be correct	ese are not					
	A1	awrt 0.0869 or 0.0868						

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom